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Abstract 
 
The U.S. Army’s Future Force is critically dependent on information superiority levels that will 
support timely, quality decision-making during high tempo operations.  The Future Force is 
anticipated to produce unprecedented levels of data requiring analysis.  Data fusion is considered 
by some as the potential solution to handling this severe data overload.  The Joint Directors of 
Laboratories Data Fusion model categorizes data fusion-related functions at a high level of 
generality.  For fusion in the Army, little has been published reflecting an elaboration of 
functionality on levels 2 and 3 of this model, both of which are viewed as critical elements of 
intelligence analysis and interpretation.  Walsh (2002) offered a first-level decomposition of 
functionality for Level 2.  Powell and Broome (2002) and Powell (2002) indicated the complex 
set of interrelationships among problems within and between fusion levels characterizing Army 
intelligence analysis and interpretation suggests a user-centric, holistic approach addressing 
fusion levels 1 through 5.  The present paper characterizes selected key aspects of analysis and 
interpretation problems and processes based on observations of Army intelligence analysis (in 
practice) associated with anticipated requirements for the Unit of Action.  We analyze the utility 
and limitations of a computational model of diagnostic reasoning with respect to intelligence 
analysis and interpretation and identify classes of knowledge that appear to be essential to 
performing these tasks.  The results are considered with respect to their implications for 
automated support to intelligence analysis and interpretation. 
 
 
Introduction 
 
The U.S. Army’s Future Combat System, and Future Force, are critically dependent on achieving 
a level of information superiority that can offset potential vulnerabilities that may arise from 
lighter (less-hardened) combat vehicles, and to support timely, quality decision-making during 
high tempo, tactical-level operations often involving an asymmetric threat.  The wealth of 
collection assets envisioned in the Future Force is anticipated to result in unprecedented levels of 
data requiring analysis and interpretation by intelligence analysts.  Data fusion is being 
considered by some as the solution to handling the severe data overload that analysts can expect 
to experience.  The Joint Directors of Laboratories (JDL) Data Fusion model categorizes data 
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fusion-related functions at a high level of generality (Steinberg et al, 1998).  Solving many 
different types of problems on all fusion levels is expected to be critical to solving complex 
analysis and interpretation problems.  For fusion in the Army, there has been little published 
reflecting an elaboration of functionality on levels 2 and 3 of the JDL model, both of which are 
viewed as critical to solving problems characterizing intelligence analysis and interpretation.  
Walsh (2002) has offered an initial first-level decomposition of functionality for Level 2.  Powell 
and Broome (2002) and Powell (2002) indicated the complex set of interrelationships among 
problems within and between fusion levels characterizing Army intelligence analysis and 
interpretation suggests a user-centric, holistic approach addressing fusion levels 1 through 5 may 
be most appropriate.  The present paper characterizes selected key aspects of analysis and 
interpretation problems and processes based on observations of Army intelligence analysis (in 
practice) associated with anticipated requirements for the Unit of Action.  We analyze the utility 
and limitations of a computational model of diagnostic reasoning with respect to intelligence 
analysis and interpretation and identify classes of knowledge that appear to be essential to 
performing these tasks.  The results are considered with respect to their implications for 
automated support to intelligence analysis and interpretation at the Unit of Action level. 
 
The work discussed in the present paper is associated with the U.S. Army’s Science and 
Technology Objective Program entitled Fusion-based Knowledge for the Future Force which is 
addressing operational problems in intelligence analysis and interpretation corresponding to 
those found on levels 2, 3 , 4 and 5 of the JDL Data Fusion Model.  
 
Answering Priority Intelligence Requirements 
 
The volume of reports that must be analyzed today represents a severe information overload on 
Army analysts at operational-level units.  The problem is expected to be exacerbated in Future 
Force units even at the tactical-level such as the Unit of Action of the Future Combat System. 
 
The present paper focuses on the problem of answering commanders’ priority intelligence 
requirements (PIRs).  PIRs are intelligence requirements that are critical to developing, analyzing 
and executing friendly force (FF) courses of action (COAs).  Typically, a given PIR is associated 
with a single point in a FF COA requiring a decision that needs to be made by the commander.  
The answer to the PIR will give the commander information critical to making a decision about 
alternatives that he/she has developed.  Other times, a given PIR will not be tied to a particular 
decision point in a FF COA, but still will be linked to a critical decision; an example might be to 
find all high-payoff targets in the area of operations so they can either be monitored or targeted.  
 
Answering critical intelligence requirements is an activity present at all echelons.  However, the 
problem we are discussing here occurs at echelons where there is a deliberate and formal process 
carried out by a staff available to develop PIRs during the military decision making process 
(MDMP), to analyze those requirements, and to develop ISR tasks to support answering them.    
In particular, our focus is the Future Combat System’s Unit of Action.  In these situations, the 
volume of information that analysts will need to analyze and interpret is expected to significantly 
strain or exceed their cognitive capacities.  Consequently, there is an interest in developing an 
understanding of this problem with the goal of developing automated support. 
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When a unit receives an operations order from higher HQ, it includes a set of intelligence 
preparation of the battlefield (IPB) products, their updated staff estimates of the situation, and 
initial commander’s guidance.  Depending on its level in the command hierarchy, the unit will 
begin carrying out the MDMP either formally (higher levels) or in some abbreviated form (lower 
levels).  Using the order and associated input specified above, the receiving HQ (at the Unit of 
Action) will carry out a set of tasks called mission analysis.  Some of the key tasks the 
intelligence staff (and often other staff in a supporting role) will perform include developing an 
initial IPB, determining information requirements and initial PIRs, and determining the initial 
intelligence, surveillance and reconnaissance plan.  The unit’s initial IPB product will include 
enemy situation templates, a modified combined obstacle overlay, and a set of high value targets.  
Later in the MDMP, during FF COA analysis, the initial set of PIRs may be changed through 
additions and/or deletions.   Each PIR will have a latest time information is of value (LTIOV) 
associated with it.  The LTIOV can be tied to an absolute or relative time, to an event, or to a 
particular point in the operation.  There are no standard sets of PIRs.  And the set of PIRs is 
dynamic, changing with the ebb and flow of the battlespace as the situation evolves pre-
engagement, and as the FF COA execution progresses through its phases.  The requirements 
management process is continuous.  
 
Focusing on Tasks (Not on Fusion Levels) 
 
Note that verbal protocols we have collected do not indicate analysts decompose their problems 
or tasks into different levels of fusion (such as those identified in the JDL Data Fusion model).  
Instead, the protocols indicate the problem-solving activities characterizing fusion at the different 
levels appear in virtually all of the functions they must perform.  Rather than tackling these 
intelligence problems by focusing on a particular level of fusion, our work investigates the actual 
tasks that Unit of Action analysts will need to carry out in fulfilling their responsibilities in 
analysis, interpretation and intelligence synchronization planning.  Our position is that 
formulating and decomposing the problem in terms of tasks analysts must perform, rather than in 
terms of fusion levels, will lead to human-machine system designs that are more likely to 
discover sub-tasks that are good candidates for machine solution, and lead to increased overall 
human-machine performance. 
 
Using Abstractions of Computational Tasks 
 
A study of doctrine and analysis of verbal protocols collected from Army intelligence analysts 
(associated with the United States Army Intelligence Center, Fort Huachuca) during the course 
of answering PIRs in simulated exercises provided a basis for trying to identify the presence of 
task types that have been framed, in computational terms, as characterizing problem-solving in 
different domains.  In particular, there appear to be several similarities between the problem-
solving tasks associated with answering PIRs and those observed in diagnostic reasoning.  We 
have used this set of task types as a model for interpreting the verbal protocols and doctrine with 
the goal of determining where and to what extent the task types are present when analysts go 
through the process of answering PIRs.    
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Diagnostic Reasoning vs. Answering Priority Intelligence Requirements 
 
In the study of problem-solving in some medical domains [e.g., Josephson et al., 1985; 
Chandrasekaran, 1983; Pople; 1977;  Reggia, 1983], protocol data have indicated that clinicians 
make use of their knowledge of a disease taxonomy to select a disease category based on the data 
available.  Such taxonomies have been developed and evolved over many decades by the 
medical community.  Although we are not ruling this possibility out, our protocol data to date do 
not suggest such a taxonomy is being used to answer PIRs.  If this turns out to be a characteristic 
of answering PIRs, it may be explained by the context-dependent nature of this problem.  Each 
PIR is tied to a critical decision associated with the FF COA.  At a very coarse level of 
representation, FF COA types may share similarities from one situation to another; however, 
closer inspection reveals the elements that comprise a given COA will be heavily dependent on 
the particular FF mission, the enemy, the terrain in the area of operations/interest, the troops (FF 
units), the time available for planning and acting, and civilians in the area (METT-TC) and how 
these factors interact with one another.  This dependency makes it extremely difficult to generate 
FF COAs having relevance and utility without knowing the particular METT-TC that they must 
address; discussions with several analysts indicate METT-TC is unique to each situation.  The 
dependency on FF COA development, analysis and selection on METT-TC also seems to 
significantly characterize answering PIRs.  A number of Army analysts have indicated that the 
analysis used to decompose a PIR into indicators and specific information requirements (SIRs) is 
METT-TC dependent.  One goal of our ongoing work is to identify aspects of reasoning directed 
at answering PIRs where there are data-to-evidence and evidence-to-hypothesis mappings that 
are independent of METT-TC or only weakly dependent (or can be defined broadly enough to be 
relevant yet narrowly enough such that retrieval and editing could be done in a timely manner).  
We discuss an example of this later in the paper.  In addition, it may be possible to usefully 
organize knowledge into distinct taxonomies which can be logically connected to each other and 
used to answer PIRs.  More on this topic below. 
 
Diagnostic reasoning has been characterized as a mapping of a set of all subsets of observations 
of a system to the set of all subsets of possible malfunctions, such that each malfunction subset is 
a best explanation for the corresponding observation subset (Josephson, 1996).  From our 
analyses, the concept of malfunctions seems to offer little when determining the mapping 
involved in answering PIRs.  Instead, if we think about organizing knowledge into a taxonomic 
form, it appears that malfunctions should be replaced by a set of other concepts including 
(minimally) plans, actions, events, units (force structures), and weapons.   Each of these concepts 
would be organized in its own hierarchy.  Based on the nature of a given PIR, one or more of 
these hierarchies would be used to construct an overall answer.  Although these hierarchies 
would need to be related logically, it is not clear at this time what those relations should be 
exactly.  The basic idea is along these lines.  Imagine we have a River-Crossing-Operation 
(RCO) concept in an Actions taxonomy, and we have some evidence to establish it as a concept 
that we want to refine.  Associated with this concept we may have represented knowledge 
indicating what this action entails such as units (force types) or equipment types.  So, we may 
have pre-defined a relation between this Action taxonomy to the Unit taxonomy that will result 
in RCO invoking a hypothesis (concept) that Combat-Engineer-Unit should be present (in the 
area where RCO is hypothesized to be occurring).  A plan hierarchy seems to be a good 
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candidate for integrating concepts comprising the other hierarchies because their domains 
(actions, units, etc.) can be defined as representing parts of plans. 
 
A number of investigators have aimed to identify task abstractions for different classes of 
problems [e.g., McDermott, 1988; Chandrasekaran, 1983].  One such abstraction (Josephson, 
1996) indicates the elementary task types in diagnosis are: 
 
•  hierarchical classification 
•  hypothesis matching 
•  knowledge-directed data retrieval 
•  abductive assembly of hypotheses 
 
Much of the remainder of the present paper uses this particular set of task abstractions, and their 
associated knowledge requirements, as a framework for attempting to decompose the problem of 
answering PIRs into computational tasks, and for identifying classes of knowledge that appear to 
be key to answering commanders’ PIRs.  
 
Hierarchical Classification 
 
This has been described as a mapping of a set of observations to the leaf nodes of a classification 
hierarchy (and including a plausibility or likelihood given the observations).   
 
Figure 1 depicts an example of knowledge encoded in a hierarchy of type-subtype links we have 
constructed which characterizes tactical operations that may be associated with a particular 
enemy force.  The intent is not to be operationally accurate regarding the particular information 
in the diagram, but to show how such a taxonomy might be usefully organized as we develop 
such knowledge about threats.  Each node in the hierarchy represents a concept defining 
offensive operations at different levels of abstraction.  Classification would involve identifying a 
node high in the tree that can be confirmed, ruled out, or suspended based on such knowledge 
encoded for that concept and the evidence in the current situation that causes the concept to be 
invoked.  Imagine the Attack concept is invoked.  If the evidence does not result in the concept 
being ruled out, or suspended due to inadequate evidence to establish it, control will pass to the 
successor nodes of Attack where each will be evaluated for rule-out, confirmation or suspension.  
This cycle is repeated until at least one leaf node of the tree is established such as Fix (subtype of 
Envelopment Right).    If no leaf nodes are established, then no adequate explanation exists given 
the observed data and the knowledge in the system.  If suspension occurs, then classification in a 
sense is in limbo until additional data result in either a rule-out or an establish.  From an Army 
perspective, the leaf nodes are at the operations task level of the hierarchy. 
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                       Tactical Operations 
 
 
 Defend                Attack                                       Retrograde              Stabilize 
 
 
   Spoiling       Deliberate            Hasty 
 
 
 
   Meeting Engagement                Envelopment          Movement to Contact 
 
 
    Envelopment Left    Envelopment Right 
 
 
     Attack by Fire             Fix                Canalize 
 
 
                             Figure 1.  Example Hierarchy of Tactical Operations 
 
 
Hypothesis Matching 
 
Hypothesis matching involves knowledge representing a hierarchy of abstractions from data to 
hypotheses.  For example, a PIR may be to determine whether a mortar will be present in a 
particular area (a Named Area of Interest - NAI) during particular phases of FF operations.  
From verbal protocols, we have identified what appears to be an abstraction hierarchy that could 
be used, and potentially re-used to a significant extent under any METT-TC, to support 
answering this PIR.  Figure 2 specifies a very small portion of this particular hierarchy, and the 
concepts represented in it are not modeled at the level of detail they would be for operational use.  
At the highest level, we may model the concept mortar-emplacement to represent this 
hypothesis.  Subordinate to this level, we may identify a data abstraction level that has concepts: 
“physical evidence for mortar-emplacement,” “fire-direction-communications evidence for 
mortar-emplacement,” and “transportation evidence for mortar-emplacement.”  Reports of a ring 
of sandbags, or a round base plate, in the NAI represent data from which “physical evidence for 
mortar-emplacement” could be inferred.  Communications transmissions from that area 
involving weather-related traffic may provide data supporting an inference that there is “fire-
directions communications for mortar emplacement” and so on.  An analyst could assign 
evidence weights to each element of data, and work out a scheme that would combine these 
weighted pieces of data.  Also, the analyst would need to set a threshold for evidence at which a 
hypothesis would be matched.  Although we have protocol data suggesting a particular scheme 
for assigning weights to data, we do not explore this issue in the present paper.  However, we see 
it as a key issue for developing automated support that will be congruent with approaches 
analysts use to assign weights.  
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Hypothesis Level   Mortar Emplacement 
 
 
 
Evidence   Physical Evidence      Communications Evidence       Transportation Evidence 
Level        For Mortar       For Mortar          For Mortar 
                  Emplacement      Emplacement         Emplacement  
 
 
 
 
Data        Round        Ring of         Weather     Pack   
Level       base plate   sandbags      data reports    animals 
 
                    Figure 2.  Example of Data-to-Evidence-to-Hypothesis Mappings 
 
 
Knowledge-directed Data Retrieval   
 
Hypothesis matching needs data in order to operate.  In answering PIRs, analysts typically will 
be flooded with reports of different types that provide data that may be useful.  However, there 
may be times when the analyst will want to check data sources (e.g., use Intelligence Reach) to 
determine if the required data have already been collected and reported.  This may be as 
straightforward as determining if a particular individual was seen in a particular area during a 
particular time interval; the answer may be available through querying a data repository.  Other 
times, the situation may be more complex and require knowledge of the relationship between 
data elements (that may be present in a data repository) and higher-level evidence.  Whenever we 
can identify knowledge of this type that is case-independent, there is an opportunity for re-use 
across potentially diverse METT-TC situations.  For example, an analyst may want to know the 
cargo capacity of a particular type of truck observed in the area of interest.  This kind of 
knowledge may be represented in a database and derivable, say, via inheritance from the data 
abstraction representing this class of truck. 
 
Abductive Assembly   
 
Abductive assembly involves assembling a subset of hypotheses into a composite hypothesis that 
best explains the data.  This task involves knowledge of the causal or logical links between 
hypotheses.  Also, knowledge of hypothesis interactions may indicate higher or lower likelihoods 
for hypotheses appearing together.   For example, an analyst may have a hypothesis that the 
enemy will conduct a river-crossing operation in a particular area during a particular interval 
because a river cuts through the avenue of approach used by the hypothesized most likely enemy 
COA.  There may also be a hypothesis that an enemy combat engineering unit is advancing 
toward that area.  The mutually supporting relationship between combat engineers and river 
crossings would increase our estimate of the likelihood of a river crossing in the area.  Abductive 
assembly also requires knowledge of general principles related to concepts such as parsimony 
that can be used to choose among different hypotheses that explain the same data.  Below we 
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present a further elaboration of classes of knowledge required for Abductive Assembly with 
respect to using it for answering commanders’ PIRs; we illustrate each with an example. 
 
Plausibility-assignment Knowledge.   Analysts need to be able to ascribe a plausibility rating to 
each hypothesis.  For example, if sandbags in a ring with a 2-10 meter diameter, and a bipod, are 
observed in a NAI, analysts should have a means for combining that information such that their 
presence together would yield a particular likelihood that this is a mortar emplacement.   
 
Explanatory Knowledge.   Analysts should be able to specify what a given hypothesis can 
explain (or account for) about the data.  For example, a river crossing hypothesis can explain the 
presence of bridging equipment on the near side of the river as well as forward observers on the 
far side of the river. 
 
Hypothesis-hypothesis Interaction Knowledge.  This was briefly discussed above in the example 
of combat engineers and river crossings in a mutually supporting interaction.  Explanatory 
interaction is another type.  One form in which this occurs is when a hypothesis is a more 
detailed refinement of another hypothesis.  For example, in Figure 1, an Envelopment is a 
refinement of a Hasty (Attack).  Decisions about how to grow the composite hypothesis would 
need to be defined in a control mechanism.  For example, explanatory coverage (breadth) may be 
given priority over the level of detail explained in which case Hasty may take precedence over 
Envelopment.  Additional data may reveal Meeting Engagement is more plausible than 
Envelopment.  
 
Strategy knowledge.  This is knowledge required to guide problem-solving; analysts should play 
a key role in specifying it.  The fundamental choice is between a fixed versus an opportunistic 
control regimen.  Verbal protocol data suggest that analysts prefer flexibility in choosing 
methods to expand an overall explanation.  For example, time available to answer a given PIR 
can influence how much explanatory coverage (breadth) is possible to pursue. 
 
Implications for Automated Assistance and Future Work 
 
Although we have begun to uncover what appear to be certain limitations of diagnostic reasoning 
as an approach to answering commanders’ PIRs, we continue to see potential value in organizing 
domain knowledge taxonomically for this task, but by factoring it into multiple taxonomies that 
can be logically linked together.  Also, we think the computational abstractions of tasks for 
diagnosis exhibit merit for decomposing intelligence tasks into relatively well-understood task 
types.  Some of the methods (which we only partially discussed in this paper) for carrying out 
these tasks show promise for performing tasks involved in answering commanders’ PIRs.   
 
The decomposition of the problem into these computational task types also is assisting us in 
identifying the knowledge types required to perform each task.  This addresses the knowledge 
acquisition bottleneck and is allowing us to develop knowledge acquisition strategies tailored to 
each task type.   
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It should be noted that hypothesis generation in this approach is via selection and composition.  
Selection is partially based on the existence of appropriate taxonomies.  One of the criteria for 
accepting a hypothesis is whether an analyst would consider it to be good enough to explain the 
data.  In cases where our composites are not good enough, we have to hold open the possibility 
that our knowledge is inadequate (that perhaps the situation is novel, for example).  
 
With an industrial partner, we are about to embark on the development of a proof-of-principle 
prototype to explore the utility of this computational task abstraction approach for diagnostic 
reasoning to supporting the development of a software capability to assist in answering 
commanders’ PIRs.  
 
Related Work 
 
Others have attempted to address the problem of answering PIRs using a Bayesian Belief 
Network (BBN) approach [e.g., Das et al, 2002; Jones et al., 1998].  Although it remains an 
empirical question, we are optimistic that the approach we are using will be more efficient in 
terms of knowledge acquisition (discussions with parties participating in these BBN efforts have 
underscored the significant knowledge acquisition challenges encountered).  Our optimism stems 
from formulating the problem and solution into multiple task types with a tailored knowledge 
acquisition approach to each task rather than formulating the problem solution within a single 
representation and inferencing formalism that relies heavily on the human analyst thinking about 
the problem from a BBN perspective.  Also, our approach may offer methods of reasoning that 
will be more easily understood and accepted by analysts than probabilistic methods.  If our 
solution approach is easier for analysts to understand, it may be easier to validate.  These are 
other issues requiring empirical assessment.  We may eventually find particular aspects of this 
set of task types that will benefit from incorporating a probabilistic approach. 
 
Implications for Training Analysts 
 
Although not a primary goal of our work, we see potential value in the computational models we 
are developing for task types involved in answering commanders’ PIRs, to shed light on useful 
ways knowledge can be organized, and reasoned with, in carrying out these tasks.  If we 
experimentally show the effectiveness and validity of this approach, it may be worthwhile for the 
Army Training and Doctrine Command to evaluate it for possible inclusion in the curriculum 
used to train analysts. 
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